Skip to contents

Polygenic scores

A polygenic score (PGS) aggregates the effects of many genetic variants into a single number which predicts genetic predisposition for a phenotype. PGS are typically composed of hundreds-to-millions of genetic variants (usually SNPs) which are combined using a weighted sum of allele dosages multiplied by their corresponding effect sizes, as estimated from a relevant genome-wide association study (GWAS).

PGS nomenclature is heterogeneous: they can also be referred to as genetic scores or genomic scores, and as polygenic risk scores (PRS) or genomic risk scores (GRS) if they predict a discrete phenotype, such as a disease.

PGS Catalog

The PGS Catalog is an open database of published polygenic scores (PGS). Each PGS in the Catalog is consistently annotated with relevant metadata; including scoring files (variants, effect alleles/weights), annotations of how the PGS was developed and applied, and evaluations of their predictive performance.

Getting PGS scores

You can search PGS scores by three criteria:

  • pgs_id: PGS identifier
  • efo_id: EFO trait identifier
  • pubmed_id: PubMed identifier

While these criteria are not terribly useful, as normally you do not know these identifiers beforehand, these are the search criteria provided by the PGS Catalog REST API (the service quincunx communicates with).

Instead of using these criteria directly, we show you how you may retrieve polygenic score information by starting with a trait or disease of interest. See vignette('pgs-scores-mavaddat') for how to get polygenic scores if starting with a publication of interest.

Let’s say you are interested in basophil count. Basophils are one of the several kinds of white blood cells and make up less than 1% of all circulating white blood cells. Basophils play a part in immune surveillance, and varying levels of basophils are associated with different medical conditions, e.g., allergies, inflammation, infection, leukemia or anemia.

We start by querying the PGS Catalog for traits with the term "basophil" — you may check vignette('getting-traits') for more details on how to use the get_traits() function.

(basophil_traits <- get_traits(trait_term = 'basophil', exact_term = FALSE))
#> An object of class "traits"
#> Slot "traits":
#> # A tibble: 2 × 6
#>   efo_id      parent_efo_id is_child trait                         descr…¹ url  
#>   <chr>       <chr>         <lgl>    <chr>                         <chr>   <chr>
#> 1 EFO_0005090 NA            FALSE    basophil count                The nu… http…
#> 2 EFO_0007992 NA            FALSE    basophil percentage of leuko… A calc… http…
#> # … with abbreviated variable name ¹​description
#> 
#> Slot "pgs_ids":
#> # A tibble: 6 × 4
#>   efo_id      parent_efo_id is_child pgs_id   
#>   <chr>       <chr>         <lgl>    <chr>    
#> 1 EFO_0005090 NA            FALSE    PGS000088
#> 2 EFO_0005090 NA            FALSE    PGS000163
#> 3 EFO_0005090 NA            FALSE    PGS001378
#> 4 EFO_0007992 NA            FALSE    PGS000089
#> 5 EFO_0007992 NA            FALSE    PGS000164
#> 6 EFO_0007992 NA            FALSE    PGS001377
#> 
#> Slot "child_pgs_ids":
#> # A tibble: 3 × 4
#>   efo_id      parent_efo_id is_child child_pgs_id
#>   <chr>       <chr>         <lgl>    <chr>       
#> 1 EFO_0005090 NA            FALSE    PGS000089   
#> 2 EFO_0005090 NA            FALSE    PGS000164   
#> 3 EFO_0005090 NA            FALSE    PGS001377   
#> 
#> Slot "trait_categories":
#> # A tibble: 4 × 4
#>   efo_id      parent_efo_id is_child trait_categories         
#>   <chr>       <chr>         <lgl>    <chr>                    
#> 1 EFO_0005090 NA            FALSE    Hematological measurement
#> 2 EFO_0005090 NA            FALSE    Inflammatory measurement 
#> 3 EFO_0007992 NA            FALSE    Hematological measurement
#> 4 EFO_0007992 NA            FALSE    Inflammatory measurement 
#> 
#> Slot "trait_synonyms":
#> # A tibble: 6 × 4
#>   efo_id      parent_efo_id is_child trait_synonyms                             
#>   <chr>       <chr>         <lgl>    <chr>                                      
#> 1 EFO_0005090 NA            FALSE    blood basophil count                       
#> 2 EFO_0007992 NA            FALSE    basophil count as percentage of total whit…
#> 3 EFO_0007992 NA            FALSE    basophil count to total WBC count ratio    
#> 4 EFO_0007992 NA            FALSE    basophil percentage                        
#> 5 EFO_0007992 NA            FALSE    basophil percentage of white cells         
#> 6 EFO_0007992 NA            FALSE    blood basophil count to total leukocyte co…
#> 
#> Slot "trait_mapped_terms":
#> # A tibble: 5 × 4
#>   efo_id      parent_efo_id is_child trait_mapped_terms
#>   <chr>       <chr>         <lgl>    <chr>             
#> 1 EFO_0005090 NA            FALSE    CMO:0000034       
#> 2 EFO_0005090 NA            FALSE    CMO:0000111       
#> 3 EFO_0005090 NA            FALSE    MedDRA:10049695   
#> 4 EFO_0005090 NA            FALSE    SNOMEDCT:42351005 
#> 5 EFO_0007992 NA            FALSE    CMO:0000368

The table (slot) pgs_ids in basophil_traits provides the associated PGS identifiers.

basophil_traits@pgs_ids
#> # A tibble: 6 × 4
#>   efo_id      parent_efo_id is_child pgs_id   
#>   <chr>       <chr>         <lgl>    <chr>    
#> 1 EFO_0005090 NA            FALSE    PGS000088
#> 2 EFO_0005090 NA            FALSE    PGS000163
#> 3 EFO_0005090 NA            FALSE    PGS001378
#> 4 EFO_0007992 NA            FALSE    PGS000089
#> 5 EFO_0007992 NA            FALSE    PGS000164
#> 6 EFO_0007992 NA            FALSE    PGS001377

These identifiers can now be used to query score information using the function get_scores():

get_scores(pgs_id = basophil_traits@pgs_ids$pgs_id)
#> An object of class "scores"
#> Slot "scores":
#> # A tibble: 6 × 12
#>   pgs_id pgs_n…¹ scori…² match…³ repor…⁴ trait…⁵ pgs_m…⁶ pgs_m…⁷ n_var…⁸ n_var…⁹
#>   <chr>  <chr>   <chr>   <lgl>   <chr>   <chr>   <chr>   <chr>     <int>   <int>
#> 1 PGS00… baso    https:… TRUE    Basoph… BASO#   Regula… "Bi-al…    9121       0
#> 2 PGS00… baso    https:… TRUE    Basoph… BASO#   Genome… "Condi…     185       0
#> 3 PGS00… GBE_IN… https:… TRUE    Basoph… https:… snpnet   NA        3050       0
#> 4 PGS00… baso_p  https:… TRUE    Basoph… BASO%   Regula… "Bi-al…    5248       0
#> 5 PGS00… baso_p  https:… TRUE    Basoph… BASO%   Genome… "Condi…     150       0
#> 6 PGS00… GBE_IN… https:… TRUE    Basoph… https:… snpnet   NA        3205       0
#> # … with 2 more variables: assembly <chr>, license <chr>, and abbreviated
#> #   variable names ¹​pgs_name, ²​scoring_file, ³​matches_publication,
#> #   ⁴​reported_trait, ⁵​trait_additional_description, ⁶​pgs_method_name,
#> #   ⁷​pgs_method_params, ⁸​n_variants, ⁹​n_variants_interactions
#> # ℹ Use `colnames()` to see all variable names
#> 
#> Slot "publications":
#> # A tibble: 6 × 8
#>   pgs_id    pgp_id    pubmed_id publication_date publication title autho…¹ doi  
#>   <chr>     <chr>     <chr>     <date>           <chr>       <chr> <chr>   <chr>
#> 1 PGS000088 PGP000051 35072137  2022-01-12       Cell Genom  Mach… Xu Y    10.1…
#> 2 PGS000163 PGP000078 32888494  2020-09-01       Cell        The … Vuckov… 10.1…
#> 3 PGS001378 PGP000244 35324888  2022-03-24       PLoS Genet  Sign… Taniga… 10.1…
#> 4 PGS000089 PGP000051 35072137  2022-01-12       Cell Genom  Mach… Xu Y    10.1…
#> 5 PGS000164 PGP000078 32888494  2020-09-01       Cell        The … Vuckov… 10.1…
#> 6 PGS001377 PGP000244 35324888  2022-03-24       PLoS Genet  Sign… Taniga… 10.1…
#> # … with abbreviated variable name ¹​author_fullname
#> 
#> Slot "samples":
#> # A tibble: 8 × 15
#>   pgs_id   sampl…¹ stage sampl…² sampl…³ sampl…⁴ sampl…⁵ pheno…⁶ ances…⁷ ances…⁸
#>   <chr>      <int> <chr>   <int>   <int>   <int>   <dbl> <chr>   <chr>   <chr>  
#> 1 PGS0000…       1 gwas   404718      NA      NA      46 NA      Europe… NA     
#> 2 PGS0000…       2 dev    323774      NA      NA      46 NA      Europe… NA     
#> 3 PGS0001…       1 gwas   408112      NA      NA      NA NA      Europe… NA     
#> 4 PGS0013…       1 dev    261890      NA      NA      NA NA      Europe… NA     
#> 5 PGS0000…       1 gwas   404532      NA      NA      46 NA      Europe… NA     
#> 6 PGS0000…       2 dev    323626      NA      NA      46 NA      Europe… NA     
#> 7 PGS0001…       1 gwas   408112      NA      NA      NA NA      Europe… NA     
#> 8 PGS0013…       1 dev    261893      NA      NA      NA NA      Europe… NA     
#> # … with 5 more variables: country <chr>,
#> #   ancestry_additional_description <chr>, study_id <chr>, pubmed_id <chr>,
#> #   cohorts_additional_description <chr>, and abbreviated variable names
#> #   ¹​sample_id, ²​sample_size, ³​sample_cases, ⁴​sample_controls,
#> #   ⁵​sample_percent_male, ⁶​phenotype_description, ⁷​ancestry_category, ⁸​ancestry
#> # ℹ Use `colnames()` to see all variable names
#> 
#> Slot "demographics":
#> # A tibble: 4 × 11
#>   pgs_id   sampl…¹ varia…² estim…³ estim…⁴ unit  varia…⁵ varia…⁶ inter…⁷ inter…⁸
#>   <chr>      <int> <chr>   <chr>     <dbl> <chr> <chr>     <dbl> <chr>     <dbl>
#> 1 PGS0000…       1 age     mean       57.2 years NA           NA range      38.9
#> 2 PGS0000…       2 age     mean       57.2 years NA           NA range      38.9
#> 3 PGS0000…       1 age     mean       57.2 years NA           NA range      38.9
#> 4 PGS0000…       2 age     mean       57.2 years NA           NA range      38.9
#> # … with 1 more variable: interval_upper <dbl>, and abbreviated variable names
#> #   ¹​sample_id, ²​variable, ³​estimate_type, ⁴​estimate, ⁵​variability_type,
#> #   ⁶​variability, ⁷​interval_type, ⁸​interval_lower
#> # ℹ Use `colnames()` to see all variable names
#> 
#> Slot "cohorts":
#> # A tibble: 8 × 4
#>   pgs_id    sample_id cohort_symbol cohort_name
#>   <chr>         <int> <chr>         <chr>      
#> 1 PGS000088         1 UKB           UK Biobank 
#> 2 PGS000088         2 UKB           UK Biobank 
#> 3 PGS000163         1 UKB           UK Biobank 
#> 4 PGS001378         1 UKB           UK Biobank 
#> 5 PGS000089         1 UKB           UK Biobank 
#> 6 PGS000089         2 UKB           UK Biobank 
#> 7 PGS000164         1 UKB           UK Biobank 
#> 8 PGS001377         1 UKB           UK Biobank 
#> 
#> Slot "traits":
#> # A tibble: 6 × 5
#>   pgs_id    efo_id      trait                             description      url  
#>   <chr>     <chr>       <chr>                             <chr>            <chr>
#> 1 PGS000088 EFO_0005090 basophil count                    The number of g… http…
#> 2 PGS000163 EFO_0005090 basophil count                    The number of g… http…
#> 3 PGS001378 EFO_0005090 basophil count                    The number of g… http…
#> 4 PGS000089 EFO_0007992 basophil percentage of leukocytes A calculated me… http…
#> 5 PGS000164 EFO_0007992 basophil percentage of leukocytes A calculated me… http…
#> 6 PGS001377 EFO_0007992 basophil percentage of leukocytes A calculated me… http…
#> 
#> Slot "stages_tally":
#> # A tibble: 14 × 4
#>    pgs_id    stage sample_size n_sample_sets
#>    <chr>     <chr>       <int>         <int>
#>  1 PGS000088 gwas       404718            NA
#>  2 PGS000088 dev        323774            NA
#>  3 PGS000088 eval           NA             2
#>  4 PGS000163 gwas       408112            NA
#>  5 PGS000163 eval           NA             2
#>  6 PGS001378 dev        261890            NA
#>  7 PGS001378 eval           NA             5
#>  8 PGS000089 gwas       404532            NA
#>  9 PGS000089 dev        323626            NA
#> 10 PGS000089 eval           NA             2
#> 11 PGS000164 gwas       408112            NA
#> 12 PGS000164 eval           NA             1
#> 13 PGS001377 dev        261893            NA
#> 14 PGS001377 eval           NA             5
#> 
#> Slot "ancestry_frequencies":
#> # A tibble: 20 × 4
#>    pgs_id    stage ancestry_class_symbol frequency
#>    <chr>     <chr> <chr>                     <dbl>
#>  1 PGS000088 gwas  EUR                         100
#>  2 PGS000088 dev   EUR                         100
#>  3 PGS000088 eval  EUR                         100
#>  4 PGS000163 gwas  EUR                         100
#>  5 PGS000163 eval  EUR                         100
#>  6 PGS001378 dev   EUR                         100
#>  7 PGS001378 eval  AFR                          20
#>  8 PGS001378 eval  EAS                          20
#>  9 PGS001378 eval  EUR                          40
#> 10 PGS001378 eval  SAS                          20
#> 11 PGS000089 gwas  EUR                         100
#> 12 PGS000089 dev   EUR                         100
#> 13 PGS000089 eval  EUR                         100
#> 14 PGS000164 gwas  EUR                         100
#> 15 PGS000164 eval  EUR                         100
#> 16 PGS001377 dev   EUR                         100
#> 17 PGS001377 eval  AFR                          20
#> 18 PGS001377 eval  EAS                          20
#> 19 PGS001377 eval  EUR                          40
#> 20 PGS001377 eval  SAS                          20
#> 
#> Slot "multi_ancestry_composition":
#> # A tibble: 0 × 4
#> # … with 4 variables: pgs_id <chr>, stage <chr>,
#> #   multi_ancestry_class_symbol <chr>, ancestry_class_symbol <chr>
#> # ℹ Use `colnames()` to see all variable names